CHAPTER II

The Fundamental Group

§1. Introduction

For any topological space X and any point x, € X, we will define a group,
called the fundamental group of X, and denoted by n(X, x;). (Actually, the
choice of the point x, is usually of minor importance, and hence it is often
omitted from the notation.) We define this group by a very simple and intuitive
procedure involving the use of closed paths in X. From the definition, it will
be clear that the group is a topological invariant of X; i.e., if two spaces are
homeomorphic, their fundamental groups are isomorphic, This gives us the
possibility of proving that two spaces are not homeomorphic by proving that
their fundamental groups are nonisomorphic. For example, this method suf-
fices to distinguish between the various compact surfaces and in many other
cases.

Now only does the fundamental group give information about spaces, but
it also is often useful in studying continuous maps. As we shall see, any
continuous map from a space X into a space Y induces a homomorphism of
the fundamental group of X into that of ¥. Certain topological properties of
the continuous map will be reflected in the properties of this induced homo-
morphism. Thus, we can prove facts about certain continuous maps by
studying the induced homomorphism of the fundamental groups.

We can summarize the above two paragraphs are follows: By using the
fundamental group, topological problems about spaces and continuous maps
can sometimes be reduced to purely algebraic problems about groups and
homomorphisms. This is the basic strategy of the entire subject of algebraic
topology: to find methods of reducing topological problems to questions of
pure algebra, and then hope that algebraists can solve the latter.
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This chapter will only give the basic definition and properties of the
fundamental group and induced homomorphism, and determine its structure
for a few very simple spaces. In later chapters we shall develop more general
methods for determining the fundamental groups of some more interesting
spaces.

§2. Basic Notation and Terminology

As usual, for any real numbers a and b such that a < b, [a, b] denotes the
closed interval of the real line with a and b as end points. For conciseness, we
set [ = [0, 1. We note that, given any two closed intervals [a, b] and [¢, 4],
there exist unique linear homeomorphisms

by, by [a, b] = [c. d].

such that
hu{a] - C,, Hﬂ[b} Lo ds

hia)=d, kb =c

We distinguish between these two by calling h, orientation preserving and
h, orientation reversing.

A path or are in a topological space X is a continuous map of some closed
interval into X. The images of the end points of the interval are called the end
points of the path or arc, an the path is said to join its end points. One of the
end points is called the initial point, the other is called the rerminal point (it
is clear which is which).

A space X is called arcwise connected or pathwise connected if any two
points of X can be joined by an arc. An arcwise-connected space is connected,
but the converse statement is not true. The arc components of X are the
maximal arcwise-connected subsets of X (by analogy with the ordinary com-
ponents of X). Note that the arc components of X need not be closed sets. A
space is locally arcwise connected if each point has a basic family of arcwise-
connected neighborhoods (by analogy with ordinary local connectivity).

ExXFRCISE

2.1. Prove that a space which is connected and locally arcwise connected is arcwise
connected.

Definition. Let f;, f, : [a, b] — X be two paths in X such that f,{a) = fila),
folB) = f(b)(i.e., the two paths have the same initial and terminal points). We
say that these two paths are equivalent, denoted by f;, ~ f,, if and only if there
exists a continuous map

filab] xI-X,
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such that
fit,0) = filr)
A l) = Lm}r €[a b

fla, s) = fyla) = i {ﬂj}
I
fib,s) = f(by = fith)*

Note that in the above definition we could replace I by any other closed
interval if necessary. We leave it as an exercise to verify that this relation is
reflexive, symmetric, and transitive.

Intuitively we say that two paths are equivalent if one can be continuously
deformed into the other in the space X. During the defomation, the end points
must remain fixed.

Our second basic definition is that of the product of two paths. The product
of two paths is only defined if the terminal point of the first path is the initial
point of the second path. If this condition holds, the product path is traversed
by traversing the first path and then the second path, in the given order. To
be precise, assume

f:la,b] = X,

g:[bc]=X

are paths such that fi{b) = g(b} (here a < b < ¢). Then the product f-g is
defined by

f(t), tela,b]

(f-ght = { (2.2.1)

glty, tef[b.cl

It is a map [a, ¢] — X. In the above definition, we had the rather cumbersome
requirement that the domains of f and g had to be the intervals [a, b] and
[b, ], respectively. We can remove this requirement by changing the domain
of {f or g by means of an orientation-preserving linear homeomorphism.
Actually, in the future we shall only be interested in equivalence classes of
paths rather than the paths themselves. By “equivalence class,” we mean, with
respect to the equivalence relation defined above and also with respect to the
following obvious equivalence relation: If f : [a, b] = X and g : [¢, d] — X are
paths such that g = fh, where h:[c, d] — [a, b] is an orientation-preserving
linear homeomorphism, then f and g are to be regarded as equivalent. Rather
than considering paths whose domain is an arbitrary closed interval and
allowing orientation-preserving linear homeomorphisms between any two
such intervals, we find it technically simpler to demand that all paths be
functions defined on one fixed interval, namely, the interval I = [0, 1]. As a
result of this simplification, the simple formula for the product of two paths,
{2.2.1), has to be replaced by a more complicated formula. Also, it will not be
immediately obvious that the multiplication of path classes is associative.
However, the reader should keep in mind that there are various alternative
ways of proceeding with this subject.
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§3. Definition of the Fundamental Group of a Space

From now on, by a path in X we mean a continuous map [ — X. If f and g
are paths in X such that the terminal point of f is the initial point of g, then
the product - g is defined by

e Jf@), 0ztsd
i g”‘{mzr—u, i1<is1

We say two paths, f,, and f,, are equivalent ( f; ~ f;) if the condition in §2 is
satisfied.

Lemma 3.1. The equivalence relation and the product we have defined are
compatible in the following sense: If fo ~ f, and gy ~ gy, then fy- g0 ~ fi -3,
(it is assumed, of course, that the terminal point of [ is the initial point of gg).

The proof may be left to the reader. In proving lemmas such as this, the
following fact is often useful: Let A and B be closed subsets of the topological
space X such that X = Au B If f is a function defined on X such that the
restrictions | A and f|B are both continuous, then [ is continuous. The proof,
which is easy, is left to the reader. In the future, we will use this fact without
comment.

As a result of Lemma 3.1, the multiplication of paths defines a multiplica-
tion of equivalence classes of paths (provided the terminal point of the first
path and the initial point of the second path coincide). It is this multiplication
of equivalence classes with which we are primarily concerned. Note that the
multiplication of paths is not associative in general, ie., (- gh-h # f-(g-h)(we
assume both products are defined). However, we have

Lemma 3.2. The multiplication of equivalence classes of paths is associative.

Proor. It suffices to prove the following: Let f, g, and h be paths such that
the terminal point of f = initial point of g, and the terminal point of g = initial
point of h. Then

(Sg)h~f-(g-h.

To prove this, consider the function F: I = I — X defined by

)
4t 541
0<i=<
f(1+s)' =tEy
B =t gy Etlegcttd

2—3

4
ﬁ(l_m—t}) Sizgzgl.
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Figure 2.1. Proof of associativity.

Then, F is continuous, F(t,0) = [(f-g)-hlt, and Fit, 1) =[f-(g-h)]t. The
motivation for the definition of F is given in Figure 2.1. Q.E.D.

For any point x € X, let us denote by &, the equivalence class of the
constant map of I into the point x of X. This path class has the following
fundamental property:

Lemma 3.3. Let x be an equivalence class of paths with initial point x and
terminal point y. Then &, 2 = a and a- &, = a.

Proof. Lete: [ — X be the constant map such that e(f) = {x} andlet f: ] —
X be a representative of the path class a. To prove the first relation, it suffices
to prove that e- f ~ f. Define F: I x [ — X by

X, 02t=4s
Fit, 5) = 2t —s
f(?.‘—s)’ Issesl

Then F(t, 0) = f(t) and F(z, 1) = (e- f)t as required. The motivation for the
definition of F is shown in Figure 2.2. The proof that - &, =  is similar and
is left to the reader. Q.ED.

For any path f: I — X, let f denote the path defined by
jf[:-_}=f“ _E:]! tel
The path f is obtained by traversing the path f in the opposite direction.

Lemma 3.4 Let @ and & denote the equivalence classes of the paths f and f,
respectively. Then,
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D) (1,1

1]

Ficure 2.2. Proof of existence of units.
gE=d, Ta=4,

where x and y are the initial and terminal points of the path f.

Proor. To prove the first equation, it suffices to show that f- f ~ e, where e
is the constant path at the point x. Therefore, we define F: I x I — X by
fi2e), 0=<t=4is
.F[I‘-,S}z f[S}, '&SEIEI—&S
fi2=2r), 1-is=r=l.

We then see that F(t, 0) = x, whereas ( /- [}t = F(t, 1). Figure 2.3 explains the
choice of the function F. We can also motivate the deformation of the path

A
(.1} (L1

]

Ficure 2.3. Proof of existence of inverses.



§3. Definition of the Fundamental Group of a Space 41

f-f into the constant path e by a simple mechanical analogy. Consider the
path f as an elastic “thread” in the space X from the point x to y; then fis
another “thread” in the opposite direction, from y to x, and f - f is represented
by joining the two threads at the point y. We can now "pull in” the doubled
thread to the point x because we do not need to keep it attached to the point y.

The proof that &-x = &, is similar and is left to the reader. Q.E.D.

In view of these properties of the path class &, from now on we will denote
it by &L It is readily seen that the conditions of the lemma just proved
characterize x "' uniguely. Hence, if f; ~ f,, then f; ~ f,.

We can summarize the lemmas just proved by saying that the set of all path
classes in X satisfies the axioms for a group, except that the product of two
paths is not always defined.

Definition. A path, or path class, is called closed, or a loop, if the initial and
terminal points are the same. The loop is said to be based at the common end
point.

Let x be any point of X; it is readily seen that the set of all loops based at
x is a group. This group is called the fundamental group or Poincaré group of
X at the base point x and is denoted by n{X, x).

Next, we will investigate the dependence of the group n(X, x) on the base
point x. Let x and y be two points in X, and let y be a path class with initial
point x and terminal point y (hence, x and y belong to the same are component
of X). Using the path y, we define a mapping u:n(X, x) — n(X, y) by the
formula x — 3 “'xy. We see immediately that this mapping is a homomorphism
of (X, x) into n(X, y). By using the path y"! instead of y, we can define a
homomorphism v: (X, ¥) = 7(X, x) in a similar manner. We immediately
verify that the composed homomorphisms vu and uv are the identity maps of
n(X, x) and n(X, y), respectively. Thus, u and v are isomorphisms, each of
which is the inverse of the other. Thus, we have proved

Theorem. 3.5. If X is arcwise connected, the groups n(X, x) and n(X, y) are
isomorphic for any two points x, y € X.

The importance of this theorem is obvious; e.g., the question as to whether
or not #(X, x) has any given group theoretic property (e.g., it is abelian, finite,
nilpotent, free, etc) is independent of the point x, and thus depends only on
the space X, provided X is arcwise connected.

On the other hand, we must keep in mind that there is no canonical or
natural isomorphism between m(X, x) and n(X, y); corresponding to each
choice of a path class from x to y there will be an isomorphism, from =(X, x)
to m(X, y), and, in general, different path classes will give rise to different
isomorphisms.



42 II. The Fundamental Group

EXERCISES

3.1. Under what conditions will two path classes, y and 7', from x to y give rise to the
same isomorphism of m{ X, x) onto 7 X, y)?

32 Let X be an arcwise-connected space. Under what conditions is the following
statement true: For any two points x, v € X, all path classes from x to y give rise
to the same isomorphism of m(X, x) onto n(X, ¥)7

33. Let f, g: I — X be two paths with initial point x, and terminal point x,. Prove
that f ~ g if and only if /- 7 is equivalent to the constant path at x, (7 is defined
as in Lemma 3.4).

We will actually determine the structure of the fundamental group of
various spaces later in this chapter and in Chapter IV,

§4. The Effect of a Continuous Mapping
on the Fundamental Group

Let ¢ : X — Y be a continuous mapping, and let f, f; : I — X be paths in X.
It is readily seen that if f; and f, are equivalent, then so are the paths @f, and
if, represented by the composed functions. Thus, if 2 denotes the path class
that contains f; and f,, it makes sense to denote by @ () the path class that
contains the paths gf, and qf;. p,(x) is the image of th path class x in the
space Y, and it is readily verified that the mapping ¢, which sends = into ¢ ()
has the following properties:

(a) If x and § are path classes in X such that a- f is defined, then @ (z- fi) =
{'-'Pg %) W, ﬂJ
(b) For any point x & X, @ (&) = &,
(€) @ula™")= (@ o).
For these reasons, we shall call ¢, a “homomorphism,” or, the "homomor-
phism induced by ¢.”
If y: Y = Z is also a continuous map, then we can verify the following
property casily:

(d) (W), = ¥ 0,
Finally, if ¢ : X — X is the identity map, then
{e) ¢,(z) = aforany pathclass zin X ie, ¢, is the identity homomorphism.

Mote that, in view of these properties, a continuous map ¢ : X — Y induces
a homomorphism ¢, : (X, x) — n(Y, @(x));and, if ¢ is a homomorphism, then
@, is an isomorphism. This induced homeomorphism will be extremely impor-
tant in studying the fundamental group.
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Caution: If @ 15 a one-to-one map, it does not follow that ¢* is one-to-one;
similarly, if @ is onto, it does not follow that g, is onto. We shall see examples
to illustrate this point later.

ExERCISE

4.1. Let : X — Y be a continuous map and let y be a class of paths in X from x, to
x,. Prove that the following diagram is commutative:

(X, xg) —— a(Y, pix))

(X, x;) —— w(Y, o(x,))

Here the isomorphism u is defined by u(z) = 3 'y, and v is defined similarly using
@,(y)in place of . [NOTE: An important special case oceurs if ¢(xg) = @(x, ). Then,
@, (7) is an clement of the group =(Y¥, o(x,)).]

To make further progress in the study of the induced homomeorphism ¢,
we must introduce the important notion of homotopy of continuous maps.

Definition. Two continuous maps @,, @, : X — Y are homotopic if and only if
there exists a continuous map ¢ : X x I — Y such that, for x e X,

@(x, 0) = @glx),
@(x, 1) = ¢@,(x).

If two maps g, and ¢, are homotopic, we shall denote this by ¢, = @,. We
leave it to the reader to verify that this is an equivalence relation on the set of
all continuous maps X — Y. The equivalence classes are called homotopy
classes of maps.

To better visualize the geometric content of the definition, let us write
@lx) = @l(x, t) forany (x, ) € X = I. Then, forany te I,

g X—=Y

is a continuous map. Think of the parameter ¢ as representing time. Then, at
time ¢ = 0, we have the map @, and, as t varies, the map ¢, varics continuously
50 that at time ¢ = 1 we have the map ¢,. For this reason, a homotopy is often
spoken of as a continuous deformation of a map.'

' The student who is familiar with the compact-open topology for function spaces will recognize
that two maps gy, @, : X — ¥ are homotopic if and only if they can be joined by an arc in the
space of all continuous functions X — ¥ (provided X and Y satisly certain hypotheses). Indeed,
the map  — g, in the above notation is a path from gy to g,
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Definition. Two maps o, ¢, : X — Y are homotopic relative to the subset A
of X if and only if there exists a continuous map @ : X = I — ¥ such that

@(x, 0) = @ylx), xe X,

@lx, 1} = @, (x), xeX,

ola, 1) = pyla) = g la), aced, tel
Mote that this condition implies @g| 4 = @, |A.

Theorem 4.1, Let @, @, : X — Y be maps that are homotopic relative to the
subset {x}. Then
Pog = P :H{Xt x} =* -ﬂ:{}r! w{)fxl”!

L.e., the induced homomorphisms are the same.
Proor. The proof is immediate.

Unfortunately, the condition that the homotopy should be relative to the
base point x is too restrictive for many purposes. This condition can be
omitted, but we then complicate the statement of the theorem. We shall,
however, do this in §8.

We shall now apply some of these results.

Definition. A subset A of a topological space X is called a retract of X if there
exists a continuous map r: X — A (called a retraction) such that r(a) = a for
any a e A.

As we shall see shortly. it is a rather strong condition to require that a
subset 4 be a retract of X. A simple example of a retract of a space is the
“center circle” of a Mbius strip. (What is the retraction in this case?)

MNow let r: X — A be a retraction, as in the above definition, and i: 4 — X
the inclusion map. For any point a € A, consider the induced homomorphisms

iy 1m(A, a) = n(X, a),
r. (X, a) = n(A, a).

Because ri = identity map, we conclude that r i, = identity homomorphism
of the group n(A4, a), by propertics (d} and (¢) given previously. From this we
conclude that i, is @ monomorphism and r, is an epimorphism. Moreover, the
condition that r, i, = identity imposes strong restrictions on the subgroup
i,n(4, a)of =X, a).

We shall actually use this result later to prove that certain subspaces are
not retracts.

EXERCISES

4.2, Show that a retract of a Hausdorfl space must be a closed subset.
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4.3 Provethatif 4 is aretract of X, r: X — A is a retraction, i 4 — X is the inclusion,
and i, m(A4) is a normal subgroup of n(X), then =(X) is the direct product of the
subgroups image i, and kernel r, (see §2 of Chapter I11 for the definition of direct
product of growps).

4.4, Let A be a subspace of X, and let ¥ be a nonempty topological space. Prove that
A = Yisaretract of X x Y if and only if A is a retract of X,

4.5 Prove that the relation “is a retract of" is transitive, Le., if 4 15 a retract of B and
B is a retract of O, then A is a retract of C.

We now introduce the notion of deformation retract. The subspace 4 is a
deformation setract of X if there exists a retraction r: X — 4 homotopic to
the identity map X — X. The precise definition is as follows:

Definition. A subset 4 of X is a deformation retract® of X if there exists a
retraction r: X — 4 and a homotopy f: X x I — X such that

Sfix, 0) = x
flx, 1) = r[x}} e

fla,t)=a, aeAd tel

Theorem 4.2. If A is a deformation retract of X, then the inclusion map
i: A= X induces an isomorphism of n(A, a) onto n(X, a) for any a € A,

ProoF. As above, r i, is the identity map of n(A, a). We will complete the
proof by showing that i r, is the identity map of n( X, a). This follows because
ir is homotopic to the identity map X — X (relative to {a}); hence, Theorem
4.1 is applicable. Q.E.D.

We shall use this theorem in two different ways. On the one hand, we shall
use it throughout the rest of this book to prove that two spaces have isomor-
phic fundamental groups. On the other hand, we can use it to prove that a
subspace is not a deformation retract by proving the fundamental groups are
not isomorphic. In particular, we shall be able to prove that certain retracts
are not deformation retracts.

Definition. A topological space X is contractible to a point if there exists a
point x, € X such that {x,} is a deformation retract of X.

Definition. A topological space X is simply connected if it is arcwise connected
and n(X, x) = {1} for some (and hence any) x € X.

Corollary 4.3. If X is contractible to a point, then X is simply connected.

? Some authors define this term in a slightly weaker fashion.
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Examples

4,1. A subset X of the plane or, more generally, of Euclidean n-space R" is
called convex if the line segment joining any two points of X lies entirely in
X. We assert that any convex subset X of R" is contractible to a point. To prove
this, choose an arbitrary point x, € X, and then define f: X x I — X by the
formula

Jix, 1) = (1 — t)x + ixg

forany (x,t) e X = I[i.e, f(x, f)is the point on the line segment joining x and
x, which divides it in the ratio (1 — f): ¢]. Then f is continuous, fix, 0) = x,
and f(x, 1) = x,, as required. More generally, we may define a subset X of R"
to be starlike with respect to the point x, € X provided the line segment joining
x and x, lies entirely in X for any x € X. Then, the same proof suffices to
show that if X is starlike with respect to x,, it is contractible to the point x,.

4.2, We assert that the unit (n — 1)-sphere $"7! is a deformation retract of
E" — {0}, the closed unit n-dimensional disc minus the origin. To prove this,
define amap f: X = [ — X, where

X=F-{0}={xeR:0<|x/ =1},
by the formula
ok

Jlx, 0 =(1 —thx +t-—.
x|

{The reader should draw a picture to show what happens here whenn = 2 or
n=3) Then f is continuous, f(x,0) = x, f(x, 1) = x/|x|e §"", and, if xe
§"71, then f{x,t) = x for all t e I. In particular, for n = 2, we see that the
boundary circle is a deformation retract of a punctured disc.

EXERCISES

4.6. Let x, be any point in the plane R?. Find a circle C in R? which is a deformation
retract of R* — {x,}. What is the n-dimensional analog of this fact?

4.7. Find a circle C which is a deformation retract of the Mobius strip.

4.8. Let T be a torus and let X be the complement of a point in T. Find a subset of
X which is homeomorphic to a figure “8” curve (i.e., the union of two circles with
a single point in common) and which is a deformation retract of X,

4.9. Generalize Exercise 4.5 to arbitrary compact surfaces, i.e, let § be a compact
surface and let X be the complement of a point in 5. Find a subset 4 of X such
that (a) A is homeomorphic to the union of a finite number of circles and (b) A
is a deformation retract of X. (HinT: Consider the representation of § as the space
obtained by identifying in pairs the edges of a certain polygon.)

4,10, Let x and y be distinct points of a simply connected space X. Prove that there
i5 & unigue path class in X with initial point x and terminal point .
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411, Let X be a topological space, and for each positive integer n let X, be an
arcwise-connected subspace containing the base point x, € X. Assume that the
subspaces X, are nested, ie, X, = X,,, for all n, that

and that for any compact subset 4 of X there exists an integer nsuch that 4 = X
{ExaMPLE; Each X, is open.) Let i, m(X,) = n{X) and j, : n(X,) = n(X, ), m < n,
denote homomorphisms induced by inclusion maps. Prove the following two
statements: (a} For any « e m(X), there exists an integer n and an element
o & m{X,) such that i (o) = o (b) If f € n(X_) and i (§) = |, then there exists an
integer n = m such that j..(f) = 1. [REMARK: These two statements imply that
#(X) is the direct limit of the sequence of groups n( X, ) and homomorphisms j .
We shall see examples later on where the hypotheses of this exercise are valid.]
1f the homomorphisms j, .., are monomorphisms for all n, prove that each i, is
also a monomorphism and that n{X) is the union of the subgroups i,n(X,}.

§5. The Fundamental Group of a Circle is
Infinite Cyclic

Let §! denote the unit circle in the Euclidean plane R?, §' = {(x, y)&
R?:x* + y* = 1} (or, equivalently, in the complex plane C). Let f: ] —+§'
denote the closed path that goes around the circle exactly once, defined by

fi{ty=(cos 2nt,sin 2mt), O0=t=1,

and denote the equivalence class of f by the symbol =.

Theorem 5.1. The fundamental group =n(S"', (1, 0)) is an infinite cyclic group
generated by the path class «.

Proof. Let g:1— 8", g(0) = g(1) = (1, 0) be a closed path in §'. We shall
prove first that g belongs to the equivalence class =™ for some integer m (m
may be positive, negative, or zero). Let

Uy = {(x,y)eS':y> —7},
Up={{x, Ne8":y <+

Then, U, and U, are connected open subsets of §', cach of which is slightly
larger than a semicircle, and U, w U, = §'. Obviously U, and U, are each
homeomorphic to an open interval of the real ling, hence, each is contractible.
In the case where g(I) = U, or g(I) = U,, it is then clear that g is equivalent
to the constant path, and hence belongs to the equivalence class of 2”. We put
this case aside and assume from now on that g{l) ¢ U, and g(I) ¢ U,.

We next assert that it is possible to divide the unit interval into subintervals
[0, 6,0, [y, t2) ooy [tp—ps 13, where O=t, < t; <+ < it,., <, =1, such
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that the following conditions hold:

(a) gllt, iy ) = Uy or
giltp tiy )= U, for 0<i<n
(b) gllti-, 1) and  g([t, 64, 1)

are not both contained in the same open set U, j = 1 or 2.

This assertion may be proved as follows. {g~'(U,), g "(U;)} is an open
covering of the compact metric space I; let & be a Lebesgue number” of this
COVETIng.

Divide the unit interval in any way whatsoever into subintervals of length
= & With this subdivision, condition {a) will hold; however, condition (b) may
not hold. If two consecutive subintervals are mapped by g into the same set
U, then amalgamate these two subintervals into a single subinterval by
omitting the common end point. Continue this process of amalgamation until
condition {b) holds.

Let fi denote the equivalence class of the path g, and let f, denote the
equivalence class of g|[t,_,, t,] for | =i = n. Then, obviously, f is a product,

|B=ﬂ1'32'---‘ﬁn-
Each f, is a path in U, or U,. Because of condition (b), it is clear that
git,) € U, » U,, U, n U, has two components, one of which contains the point
(1, 0), and the other of which contains the point (— 1, 0). For each index i,
00 < i < n,choose a path class 3, in U, n U, with initial point g{t;) and terminal
point (1, 0) or {— 1, 0), depending on which component of U; n U, contains
gir;). Let

t'51 = i1
&=y_1fn for l<i<n,
‘:jil - }Il 11 IBI-
Then, it is clear that
B =68y 0, (2.51)

where each 8, is a path class in U, or U, having its initial and terminal points
in the set {(1,0),(—1,0)}. For any index i, if 4, is a closed path class, then
& = 1, because U, and U, are simply connected. We may therefore assume
that any such &, has been dropped from formula (2.5-1), and, changing notation
if necessary, that §,, 4;, ..., and 8, are not closed paths.

Becuase U, is simply connected, there is a unique path class », in U, with

* We say e is a Lebesgue number of a covering of a metric space X if the following condition holds:
Any subset of X of diameter <& is contained in some set of the covering. [ is a theorem that any
apen covering of a compact metric space has a Lebesgue number, The reader may either prove
this as an exercise or look up the proof in a textbook on general topology.
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initial point (1, 0) and terminal point {— 1, 0) (see Exercise 4.10). Also, ;! is
the unique path class in U, with initial point (— 1, 0} and terminal point (1, 0).
Analogously, we denote by n, the unique path class in U, with initial point
{—1, 0) and terminal point (1, 0). Note that 1,4, = &

Thus, we sec that, for each index i,

&=ni' or §=ni.

In view of condition (b) above, il §, = n ', then 5,,, = n3!, while if §, = 5!,
then é,,, = nt'. Therefore only the following possibilities remain:

ﬂ' =1,

B =ninaniny N2,
or

B=n:'ni"ny' 0t ong et
In the second case f = «™ for some m > 0, whereas in the third case f§ = «™
for some integer m < 0. Thus, we have ff = 2™ in all cases.

From this it follows that n(5") is a cyclic group. However, this argument
gives no hint as to the order of #(5'). In §3 of Chapter V we will complete the
proof by showing that n(S') is an infinite group, using the theory of covering
spaces; another proof is given in the discussion of Example 7.1 of Chapter V.
When we introduce homology theory later on, it will be easy to give still other
proofs.

It would be possible to give a direct, ad hoc proof now that n(S" ) is infinite;
see Massey ([2], Chapter 11) or Ahlfors and Sario ([1], Chapter [, Section 10},
It 15 also possible to give a proof using the concept of the winding number or
index of a closed path in the plane with respect to a point; this is explained in
most textbooks on complex function theory., The theory of the winding
number or index can also be developed in the context of real function theory.

Given the fundamental importance of Theorem 5.1 and its basic intuitive

appeal, it is not surprising that there should be so many different proofs
available. Q.E.D.

As a corollary of Theorem 5.1, we see that the fundamental group of any
space with a circle as deformation retract is infinite cyclic. Examples of such
spaces are the Mdbius strip, a punctured disc, the punctured plane, a region
in the plane bounded by two concentric circles, etc. (see the exercises in the
preceding section).

EXERCISES

51. Let {L;} be an open covering of the space X having the following properties:
{a) There exists a point x, such that x, € U, for all i. (b} Each U, is simply connected.
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() If i # J, then L)~ U is arcwise connected. Prove that X is simply connected.
[HINT: To prove any loop f: I — X based at x, is trivial, first consider the open
covering { f “(U,}} of the compact metric space I and make use of the Lebesgue
number of this covering.]

Remark. The two most important cases of this exercise are the following: (1) A
covering by two open sets and (2) the sets U are linearly ordered by inclusion.
The student should restate the exercise for these two special cases,

5.2, Use the result of Exercise 5.2, remark (1), to prove that the unit 2-sphere 82 or,
more generally, the n-sphere §*, n = 2, is simply connected.

53, Prove that R? and R" are not homeomorphic if n # 2. (HINT: Consider the
complement of a point in R* or R")

5.4. Prove that any homeomorphism of the closed disc E* onto itself maps § ' onto 8!
and U7 onto U2,

§6. Application: The Brouwer Fixed-Point Theorem
in Dimension 2

One of the best known theorems of topology is the following fixed-point
theorem of L.E.J. Brouwer. Let E" denote the closed unit ball in Euclidean
n-space R™

E"={xeR":|x| =1}

Theorem 6.1. Any continuous map f of E" into itself has at least one fixed point,
i.e., a point x such that f(x) = x.

We shall only prove this theorem for n < 2. Before going into the proof, it
seems worthwhile to indicate why there should be interest in fixed-point
theorems such as this one.

Suppose we have a system of n equations in n unknowns:

g1(%10-er %) = 0,
e as
yn(xl.fﬂ-ng x,.,] = {]_

Here the g;'s are assumed to be continuous real-valued functions of the real
variables x,, ..., x,. It is often an important problem to be able to decide
whether or not such a system of equations has a solution. We can transform
this problem into a fixed-point problem as follows. Let

'ﬁi{xh Ay xn] - g][xh iy xn] + Xy



